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Abstract

The main purpose of this paper is to investigate the asymptotic almost sure behavior of some general robust
estimator m̂n(x) of the classical regression curve m(x) := IE[Y |X = x]. We consider the maximal deviation of
m̂n(x) and, under minimal conditions, we obtain the exact rates of strong uniform consistency and the limiting
constants. Our theorems take form of uniform limit laws of the logarithm in the same spirit of several laws of the
iterated logarithm developped by Deheuvels, Einmahl and Mason in the last decade. The methodology of proofs
combines classical approaches in M -estimation and nonparametric regression with some recent developments in
empirical process theory.
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1. Introduction

Let (X,Y ), (X1, Y1), (X2, Y2), . . ., be independant and identically distributed random vectors with joint
probability density fX,Y (x, y) =: f(x, y) and marginal density fX(x) =: g(x) for each (x, y) ∈ IR2. Let
m(x) = IE[Y |X = x] denote the classical regression curve of Y on X. In this paper, we are interested
by the robust estimation of the unknown regression function which can be easily handled by the general
method of M -estimation (see below). The usual estimates of the regression function m(x) consist of local
averages of the response variables Yi (corresponding to the Xi close to x), namely

m̂(x) =
n∑
i=1

Wni(x)Yi, (1.1)
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where Wni denotes a specific weight function. For example, if we choose

Wni(x) = K
(x−Xi

hn

){ n∑
i=1

K
(x−Xi

hn

)}−1

with K a kernel function and hn the bandwidth,

we obtain the well known Nadaraya-Watson estimator, proposed independently by Nadaraya [15] and
Watson [19]. The kernel function K : IR → IR, often compactly supported, determines the shape of the
neighborhood and the size of the neighborhood is regulated by the bandwidth sequence {hn}. Unfortu-
nately such local averages are very sensitive to outliers and so has been motivated the introduction of
robust methods in nonparametric regression estimation. As we shall see later, robust estimates of the
regression are generally nonlinear smoothers and cannot be expressed as in (1.1).

In the more general setting of M -functionals for location (see, e.g., [16]), we recall that the regression
function m(x) = mψ(x) is then defined as the trend satisfying

IE
[
ψ

(
Y −m(x)

)∣∣X = x
]

= 0, where ψ is the derivative of some convex loss function. (1.2)

The function ψ above is used as an indexing parameter and the shape of ψ determines the regression
curve m(x). Different choices of ψ yield the conditional mean (corresponding to the L2 loss) or the
conditional median (corresponding to the L1 loss) for instance. Throughout this paper, we decide to work
with a symmetric conditional distribution function FY |X and so the conditional median coincides with
the conditional mean and the center of symmetry of the conditional distribution.

To build our estimator, we follow one appealing approach to robust nonparametric regression based on
concatening the kernel method for smoothing and the M -estimation approach to robust estimation. In
this purpose, we need to introduce some notations. Let K : IR → IR be a (positive) kernel function and hn
is a sequence of bandwidths tending to zero as n tends to infinity. Here and elsewhere, a kernel function
is assumed to be a symmetric density function with finite second moment and compact support (i.e. a
kernel of order two). It is possible to choose a kernel with more vanishing moments in order to reduce the
bias but, in this case, it would be needed to have stronger hypotheses on the distribution of (X,Y ). Our
kernel based robust estimator m̂n(x) = m̂n;ψ(x) of the regression m(x) is defined as the solution (with
respect to t) of the following equation

1
nhn

n∑
i=1

ψ
(
Yi − t

)
K

(x−Xi

hn

)
= 0.

Here, ψ : IR → IR denotes a bounded monotone, antisymmetric function to be specified later. Of course,
the choice of the ψ-function influences the properties of m̂n(x) and depends of the kind of contamination
model that is assumed to have generated the outliers. For instance, in the normal contamination model
considered by Huber [13], we recommend the classical ψ-function defined by

ψk(x) = [x]k−k :=


−k for x ≤ −k,
x for |x| ≤ k,

k for x ≥ k.

(1.3)

The question of choosing ψ or k to minimize the asymptotic variance is precisely the classical problem of
efficiency. Notice that when k = 0, we obtain a kernel estimator of the conditional median (see, e.g., [17]),
on the other hand, when k = ∞ we recover the Nadaraya-Watson estimator of the conditional expectation
IE[Y |X = x]. These two cases represent the limiting cases of the Huber-type estimator and m̂n;ψk

(x) is
therefore an estimator between the conditional median and the conditional mean. It is possible to write
our estimator m̂n(x) with the local polynomial techniques (see [5]) in order to improve the bias but we
prefer to avoid this possibility for the sake of clarity. In this avenue, Fan et al. obtain some results in [6].

2



Concerning the literature on robust estimation of the regression function, we may cite, among others
authors, Cleveland [2], Härdle and Gasser [9], Härdle and Luckhaus [12], Härdle [8], Hall and Jones [7]
and Boente et al. [1]. An important paper, which has motivated our approach, is Härdle, Janssen and
Serfling [11]. In this paper the authors have established the rates of almost sure uniform consistency
for a general M -smoother of the regression but their method of proof don’t permit them to obtain the
exact asymptotic law. In the next section, we present our assumptions and results and the last section is
devoted to the proofs. Our results consist of new limit laws for M -smoothers and allow the construction
of robust asymptotic uniform confidence bands for the regression curve m(x) (see, e.g., [3] or [8]). As a
by-product of our work, we are able to determine the optimal bandwidth with respect to the almost sure
uniform convergence.

2. Results

Let I = [a, b] denote an arbitrary but compact interval on IR. We will assume the following assumptions
on the distribution of the random pair (X,Y ):

(A.1) ψ is a monotone, locally bounded function such that IE
[
ψ

(
Y −m(x)

)∣∣X = x
]

= 0.
(A.2) There exists some positive constants c0, c1 such that,

inf
x∈I

IE
[
ψ

(
Y −m(x) + s

)∣∣X = x
]
> c0|s|, |s| < c1.

(A.3) The marginal density of X is continuous and strictly positive on I, i.e. inf
x∈I

g(x) = g0 > 0. Moreover

inf
x∈I

IE
[{
ψ′

(
Y −m(x)

)}∣∣X = x
]
> 0. (2.1)

(A.4) The conditional densities f(y|x) are symmetric for all x. The regression function m(x) is twice
continuously differentiable for all x ∈ I and ψ is piecewise twice continuously differentiable.

In the context of M -smoothing we don’t need to assume Y bounded because the ψ-function is itself
bounded. Assumption (A.3) and (2.1) are linked to the minimization problem formulated in (1.2). As-
sumption (A.4) asking for the symmetry of the conditional densities is a common assumption in robust
estimation (see, e.g., Huber [14]). It ensures that the only solution of

∫
ψ(y − ·)f(y|x)dy = 0 is m(x) =

IE[Y |X = x]. Notice that in the case of skew distributions then we would no longer estimate the condi-
tional mean but rather some different measure of location. Finally, the regularity conditions on m(x) are
necessary in order to describe the asymptotic bias of m̂n(x).

Our main theorem, stated below, generalizes some previous results in nonparametric regression estimation
(see, e.g., Corollary 3 in [4], Theorem 3.4 in [11]).

Theorem 2.1 Assume that assumptions (A.1–4) are verified. The smoothing parameter hn satisfies the
following growth conditions, as n→∞,

hn ↘ 0, nhn ↗∞,
nhn

log(1/hn)
→∞,

log(1/hn)
log2 n

→∞.

If, moreover, nh5
n

/
log(1/hn) → 0 , as n→∞, we have, with probability one∣∣∣{ nhn

2 log(1/hn)

}1/2

sup
x∈I

±
{
m̂n(x)−m(x)

}
− σψ(I)

∣∣∣=o(1), (2.2)
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where

σψ(I) = sup
x∈I

{
Var

[
ψ

(
Y −m(x)

)
|X = x

]
g(x)IE2

[
ψ′

(
Y −m(x)

)] ∫
IR

K2(u)du

}1/2

.

By replacing the unknown quantities in σψ(I) by plug-in estimates, we can easily formulate asymptotic
confidence bands for the regression curve, in the same way as Deheuvels and Mason did in [3]. For
instance, we can consider the following pilot kernel estimators of g(x), Var

[
ψ

(
Y −m(x)

)
|X = x

]
:= v(x)

and IE
[
ψ′

(
Y −m(x)

)]
:= w(x), given respectively by

ĝn(x) =
1
nhn

n∑
i=1

K
(x−Xi

hn

)
, v̂n(x) =

n∑
i=1

ψ2
(
Yi − m̂n(x)

)
K

(x−Xi

hn

)
n∑
i=1

K
(x−Xi

hn

) and

ŵn(x) =

n∑
i=1

ψ′
(
Yi − m̂n(x)

)
K

(x−Xi

hn

)
n∑
i=1

K
(x−Xi

hn

) .

We deduce from (2.2) the following result in probability,{ nhn
2 log(1/hn)

}1/2

sup
x∈I

±
{
ŵn(x)ĝn(x)
v̂n(x)

}1/2{
m̂n(x)−m(x)

} IP→
{ ∫

IR

K2(u)du
}1/2

. (2.3)

From the last display, it readily follows that

IP

{
m(x) ∈

[
m̂n(x)±

{
2 log(1/hn)v̂n(x)
nhnŵn(x)ĝn(x)

}1/2{ ∫
IR

K2(u)du
}1/2]}

→ 1.

Remark 2.1 Considering the work of Einmahl and Mason [4], we can also extend Theorem 2.1 uniformly
in ψ ∈ Ψ where Ψ denotes a bounded class of functions which satisfies a specific entropy condition. Here
and after a.s.= stands for almost sure equality. Under the assumptions of Theorem 2.1, if Ψ denotes a
bounded pointwise measurable VC subgraph class of real valued functions, we have, as n→∞,∣∣∣{ nhn

2 log(1/hn)

}1/2

sup
ψ∈Ψ

sup
x∈I

±
{
m̂n;ψ(x)−mψ(x)

}
− σΨ(I)

∣∣∣ a.s.= o(1), (2.4)

where

σΨ(I) = sup
ψ∈Ψ

sup
x∈I

{
Var

[
ψ

(
Y −mψ(x)

)∣∣X = x
]

g(x)IE2
[
ψ′

(
Y −mψ(x)

)] ∫
IR

K2(u)du

}1/2

.

For a precise definition of a pointwise mesurable VC subgraph class, we refer to [4] and the references
therein. For instance, the class H := {ψk; k ∈ IR+} consisting of the Huber’s ψ-functions (1.3) is clearly
a bounded pointwise mesurable VC subgraph class.

Corollary 2.1 Under the assumptions of Theorem 2.1, we obtain, as n→∞,∣∣∣{ nhn
2 log(1/hn)

}1/2

sup
k∈IR+

sup
x∈I

±
{
m̂n;ψk

(x)−m(x)
}
− σH(I)

∣∣∣ a.s.= o(1),
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where

σH(I) = sup
k∈IR+

sup
x∈I

{
IE

[
ψ2
k

(
Y −m(x)

)
|X = x

]
g(x)

{
IP

[∣∣Y −m(x)
∣∣ ≤ k

]}2

∫
IR

K2(u)du

}1/2

.

-On optimal bandwidth choice related to uniform convergence

All of these results are dealing with the random part of the maximal deviation supx∈I
{
m̂n(x)−m(x)

}
.

On the other hand, when the bandwidth is larger and choosen such that nh5
n

/
log(1/hn) →∞ as n→∞,

the deterministic part become bigger than the stochastic part and we obtain that∣∣∣{hn}−2 sup
x∈I

±
{
m̂n(x)−m(x)

}
− β(I)

∣∣∣ p.s.= o(1), (2.5)

where
β(I) = sup

x∈I

1
2
{
m′′(x)

} ∫
IR

u2K(u)du.

The result stated in (2.5) is exactly the same as in classical nonparametric regression estimation. The
proper choice of hn is therefore a trade-off between the respectives magnitudes of the random term and
the bias term. We have to minimize in h the following expression{ nhn

2 log(1/hn)

}−1

σ2
ψ(I) + h4

n β
2(I).

This leads us to the following optimal global bandwidth

h?n =
{ log n

n

}1/5
{
σ2
ψ(I)

4β2(I)

}1/5

.

For more details about plug-in estimates and the choice of the bandwidth, we refer to the paper of Boeman
et al. [1]. The authors propose in the fixed design case two robust bandwith selection methods (plug-in
and least squares cross-validation) for local M -estimates used in nonparametric regression.

3. Proofs

The study of the asymptotic behavior of our M -estimator rely on three main arguments. First, we
establish the uniform strong consistency of m̂n(x) with a preliminary rate of convergence. Thereafter, using
Taylor expansion, we prove an asymptotic equivalence between the maximal deviation supx∈I ±

{
m̂n(x)−

m(x)
}

and its linearized counterpart. Finally, taking advantage of some recent development in empirical
process theory combined with a very classical Slutsky-type argument we find the almost sure asymptotic
distribution of m̂n(x).

For x ∈ I and t ∈ IR, set

r̂n(x; t) = r̂n;ψ(x; t) :=
1
nhn

n∑
i=1

ψ
(
Yi − t

)
K

(x−Xi

hn

)
,

r̂′n(x; t) = r̂′n;ψ(x; t) :=
1
nhn

n∑
i=1

ψ′
(
Yi − t

)
K

(x−Xi

hn

)
,
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r̂′′n(x; t) = r̂′′n;ψ(x; t) :=
1
nhn

n∑
i=1

ψ′′
(
Yi − t

)
K

(x−Xi

hn

)
,

and
r(x; t) = rψ(x; t) :=

∫
IR

ψ
(
y − t

)
f(x, y)dy = IE

[
ψ

(
y − t

)∣∣X = x
]
g(x).

The target function m(x) and our robust estimator m̂n(x) are defined, respectively, as the solutions with
respect to t of these equations,

r(x; t) = 0 and r̂n(x; t) = 0. (3.1)

Remark 3.1 We recall that m(x) is defined by the equation IE
[
ψ(Y −m(x))|X = x

]
= 0 (see (A.1))

which clearly entails r(x;m(x)) = 0 by (A.3), for each x ∈ I.
The shape function ψ(·) is monotone and we may assume, without loss of generality, that ψ(·) is increasing.
For convenience, we introduce an auxiliary decreasing sequence {τn : n ≥ 1} of strictly positive constants
such that τn → 0 as n→∞. If we look at the right side of m(x), we have

m̂n(x) > m(x) + τn ⇒ r̂n(x;m(x) + τn) ≥ 0, (3.2)

via (3.1) combined with the fact that r̂n(x; ·) is decreasing. Obviously,

r̂n(x;m(x) + τn) ≤ r(x;m(x) + τn) + sup
t∈IR

{
r̂n(x; t)− r(x; t)

}
. (3.3)

According to the monocity of ψ(·) we can rewrite (A.2) as follows, for all n such that τn < c1,

inf
x∈I

IE
[
ψ

(
Y −m(x)− τn

)∣∣X = x
]
< −c0τn.

Therefore, for all x ∈ I, we obtain via (A.3)

r(x;m(x) + τn) = IE
[
ψ

(
Y −m(x)− τn

)∣∣X = x
]
g(x) < −c0g0τn, where g0 = inf

x∈I
g(x). (3.4)

Next by combining (3.2), (3.3) and (3.4), we conclude that, for all n such that τn < c1 and for all x ∈ I,

m̂n(x) > m(x) + τn ⇒ sup
t∈IR

{
r̂n(x; t)− r(x; t)

}
> c0g0τn. (3.5)

On the other side
m̂n(x) < m(x)− τn ⇒ r̂n(x;m(x)− τn) < 0.

Using a similar argument as above, we obtain that, for all n such that τn < c1 and for all x ∈ I,

m̂n(x) < m(x)− τn ⇒ sup
t∈IR

{
r(x; t)− r̂n(x; t)

}
> c0f0τn. (3.6)

Thus, (3.5) and (3.6) entail

sup
x∈I

±
{
m̂n(x)−m(x)

}
> τn ⇒ sup

x∈I
sup
t∈IR

±
{
r̂n(x; t)− r(x; t)

}
> c0g0τn, (3.7)

or
sup
x∈I

sup
t∈IR

±
{
r̂n(x; t)− r(x; t)

}
≤ c0g0τn ⇒ sup

x∈I
±

{
m̂n(x)−m(x)

}
≤ τn. (3.8)

In conclusion, the uniform strong convergence of m̂n(x) can be reduced to the uniform strong convergence
of r̂n(x; t). Now, taking advantage of some recent development in empirical process theory and nonpara-
metric estimation (see, e.g., [3] or [4]), we are able to obtain the following theorem concerning the uniform
strong consistency of r̂n(x; t).
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Theorem 3.1 Assume that assumptions (A.1–4) are verified. When the bandwidth hn satisfies the fol-
lowing growth conditions, as n→∞,

hn ↘ 0, nhn ↗∞,
nhn

log(1/hn)
→∞,

log(1/hn)
log2 n

→∞,

we obtain, as n→∞∣∣∣∣{ nhn
2 log(1/hn)

}1/2

sup
x∈I

sup
t∈IR

±
{
r̂n

(
x; t

)
− rn

(
x; t

)}
− σr(I)

∣∣∣∣ p.s.= o(1), (3.9)

where

σr(I) = sup
x∈I

sup
t∈IR

{
Var

[
ψ(Y − t)|X = x

]
g(x)

∫
IR

K2(u)du

}1/2

.

Proof. The core of the proof relies on a remarquable Bernstein-type exponential inequality for the empirical
process indexed by some bounded class of functions (see, e.g., [18]). This inequality is very useful when the
classes of functions encountered satisfy a specific entropy condition. Namely, we require that the indexing
class of functions has a polynomial covering number. When the class is a Vapnik-Chervonenkis (VC)
class, this condition is always satisfied. The proof is almost exactly the same as the proof of Theorem 1
in [4]. In our case, we just remark that, by monoticity of ψ, the set of all translates

{
ψ(y − t) : t ∈ IR

}
is

VC of index 2 (see, e.g., Lemma 2.6.16, p. 146, in [18]). 2

We present also a corollary for a later use.

Corollary 3.1 Assume that assumptions (A.1–4) are verified. The smoothing parameter hn satisfies the
following growth conditions, when n→∞,

hn ↘ 0, nhn ↗∞,
nhn

log(1/hn)
→∞,

log(1/hn)
log2 n

→∞.

We have, when n→∞,∣∣∣∣{ nhn
2 log(1/hn)

}1/2

sup
x∈I

±
{
r̂n

(
x;m(x)

)
− rn

(
x;m(x)

)}
− σrm(I)

∣∣∣∣ p.s.= o(1), (3.10)

where

σrm
(I) = sup

x∈I

{
Var

[
ψ

(
Y −m(x)

)
|X = x

]
g(x)

∫
IR

K2(u)du

}1/2

.

Moreover, if ζn(x) is a random sequence such that

sup
x∈I

∣∣∣∣ζn(x)ζ(x)
− 1

∣∣∣∣ a.s.→ 0,

we obtain ∣∣∣∣{ nhn
2 log(1/hn)

}1/2

sup
x∈I

±ζn(x)
{
r̂n

(
x;m(x)

)
− rn

(
x;m(x)

)}
− σζrm

(I)
∣∣∣∣ p.s.= o(1), (3.11)

where

σζrm
(I) = sup

x∈I

{
ζ2(x) Var

[
ψ

(
Y −m(x)

)
|X = x

]
g(x)

∫
IR

K2(u)du

}1/2

.

The proof of (3.11) is a simple consequence of Theorem 3.1 combined with an use of the Slutsky lemma.
Notice that (3.11) implies the assertion (2.3).
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Returning to the proof of the uniform strong consistency and using well-known bias calculations, we
obtain

sup
x∈I

sup
t∈IR

±
{
rn(x; t)− r(x; t)

}
= O(h2

n).

By theorem 3.1,

sup
x∈I

sup
t∈IR

±
{
r̂n(x; t)− rn(x; t)

}
a.s.= O

({
nhn

log(h−1
n )

}1/2)
.

Thus, we have

sup
x∈I

sup
t∈IR

±
{
r̂n(x; t)− r(x; t)

}
≤ sup

x∈I
sup
t∈IR

±
{
r̂n(x; t)− rn(x; t)

}
+ sup
x∈I

sup
t∈IR

±
{
rn(x, t)− r(x, t)

}
a.s.= O

({
log(h−1

n )
nhn

}1/2)
+O

(
h2
n

)
a.s.= O

({
log(h−1

n )
nhn

}1/2

+ h2
n

)
=: O

(
ϑn

)
.

Hence, by (3.8) we have the strong uniform consistency with a preliminary rate of convergence, i.e.

sup
x∈I

±
{
m̂n(x)−m(x)

}
a.s.= O

({
log(h−1

n )
nhn

}1/2

+ h2
n

)
= O

(
ϑn

)
. (3.12)

Next proving uniform consistency, we obtain by Taylor expansion the following crucial decomposition

r̂n
(
x; m̂n(x)

) a.s.= r̂n
(
x;m(x)

)
+ r̂′n

(
x;m(x)

){
m̂n(x)−m(x)

}
+ o(ϑn), ∀x ∈ I. (3.13)

The third term of the decomposition is exactly

1
2
r̂′′n

(
x;m(x) + ξ

){
m̂n(x)−m(x)

}2 with |ξ| <
∣∣m̂n(x)−m(x)

∣∣,
which is clearly a o(ϑn) by (3.12). Now, (3.13) is equivalent to

sup
x∈I

{
m̂n(x)−m(x)

} a.s.= sup
x∈I

{
r̂n

(
x;m(x)

)
−r̂′n

(
x;m(x)

)}
+ o(ϑn)., (3.14)

Since the smoothing parameter hn satisfies the following additional assumption, nh5
n/ log(1/hn) → 0 as

n→∞, the bias becomes asymptotically negligible

sup
x∈I

{
rn

(
x;m(x)

)
− r

(
x;m(x)

)}
= O(h2

n) = o(ϑn) = o

({
log(h−1

n )
nhn

}1/2)
.

This together with r
(
x;m(x)

)
= 0 lead to{

nhn

log
(
1/hn

)}1/2

sup
x∈I

{
r̂n

(
x;m(x)

)}
=

{
nhn

log
(
1/hn

)}1/2

sup
x∈I

{
r̂n

(
x;m(x)

)
− rn

(
x;m(x)

)}
+ o(1).

Thus, (3.14) gives us{
nhn

log
(
1/hn

)}1/2

sup
x∈I

{
m̂n(x)−m(x)

} a.s.= sup
x∈I

{{
r̂n

(
x;m(x)

)
− rn

(
x;m(x)

)}{
− r̂′n

(
x;m(x)

)} }
+ o(1). (3.15)
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If we set ζn(x) = −r̂′n
(
x;m(x)

)
and ζ(x) = −g(x)IE

[
ψ′(Y −m(x))

]
in Corollary 3.1, we have clearly

sup
x∈I

∣∣∣∣ζn(x)ζ(x)
− 1

∣∣∣∣ a.s.→ 0.

Finally, combining (3.11) with (3.15), the proof of Theorem 2.1 is complete.
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