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Abstract

We establish exact rates of strong uniform consistency for the multivariate Nadaraya-Watson kernel estimator of
the regression function and its derivatives. As a special case, we treat the local linear estimator of the regression
and the local polynomial smoothers of derivatives of the regression in the more convenient univariate setting. Our
methods of proofs are based upon modern empirical process theory in the spirit of the results of Einmahl and
Mason [4] and Deheuvels and Mason [2] relative to uniform deviations of nonparametric kernel estimators.
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1. Introduction

Let (X,Y) = (X1,Y1), (X2,Y2), . . ., be independent and identically distributed random vectors in
IRp×IRd. In this paper, we are concerned with the estimation of the conditional expectation of a functional
ψ of Y given X. The following notation and assumptions will be in force. Let x (respectively y) denote
a vector in IRp (resp. IRd). We assume that the distribution function of (X,Y) has a Lebesgue density
fX,Y(x,y) = g(x,y) on IRp × IRd. We denote by fX(x) = f(x) the marginal density of X assumed to
exist for each x ∈ IRp. Let ψ : IRd → IRq a Borel measurable function, bounded on each compact set of
IRd. We consider the regression function of ψ(Y) given X = x, defined by

mψ(x) = IE
[
ψ(Y)|X = x

]
=

1
f(x)

∫
IRd

ψ(y)g(x,y)dy :=
rψ(x)
f(x)

, (1.1)

whenever this regression function is meaningful (see, e.g., (F.1–3) below). Throughout this paper, we will
investigate the strong consistency of kernel-type estimators of the regression mψ(x) and its derivatives.
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Denote by I =
∏p
i=1[ai, bi] and J =

∏p
i=1[a

′
i, b

′
i] ⊃ I two fixed closed hyper-rectangles of IRp such that

−∞ < a′i < ai < bi < b′i <∞, for i = 1, . . . , p.

We will work in the multivariate framework, where p ≥ 1, q ≥ 1, d ≥ 1 are arbitrary integers, and impose
the following set of assumptions upon the distribution of (X,Y).

(F.1) g(·, ·) is continuous on J× IRd;

(F.2) f(·) is continuous and strictly positive on J;

(F.3) Y1I{X∈J} is bounded on IRd.

Remark 1.1 The above assumption (F.3) is introduced for technical reasons related to our forthcoming
proofs. At times, we will replace this assumption by

(F.4) for some s > 2, supx∈J IE
[
ψ(Y)s|X = x

]
<∞.

We will see in the sequel that our methods do not allow us to establish a compact law of the iterated
logarithm when (F.4) does not hold. Details on this problem are given in Einmahl and Mason [4] and
Deheuvels and Mason [2].

Here and elsewhere k ≥ 1 denotes a fixed order of differentiation in the following sense. Let ζ = (ζ1, . . . , ζq)
be an arbitrary measurable function with ζj : IRp → IR, j = 1, . . . , q. In this section, we consider
estimation of functionals of ζ defined at x = (x1, . . . , xp) ∈ J. For each p-uple of non-negative integers
k1 ≥ 0, . . . , kp ≥ 0, k = (k1, . . . , kp), we introduce the differential operator D(k) of order |k| = k =
k1 + . . .+ kp, defined by

D(k)ζ(x) = ζ(k)(x) =
(
D(k)ζ1(x), . . .D(k)ζq(x)

)
,

where
D(k)ζj(x) =

( ∂

∂x1

)k1
. . .

( ∂

∂xp

)kp

ζj(x), j = 1, . . . , q.

At first, we treat the Nadaraya-Watson kernel estimator (see [15] and [20])) and its partial derivatives
when the predictor variables are IRp-valued. For this purpose we introduce a general kernel function
K : IRp → IR, fulfilling the conditions

(K.1) (i) K is bounded;

(ii) K(x1, . . . , xp) is a right-continuous function of x1, . . . , xp;

(iii) K(u) = Φ(P (u)),where P is a polynomial, and Φ is a real valued function of bounded variation;

(K.2) K is compactly supported;

(K.3)
∫
IRp K(u) du = 1;

(K.4) K is k-times differentiable, with partial derivatives satisfying (K.1).

Remark 1.2 1) When k ≥ 2, the hypotheses (K.2) and (K.4) imply K to be of bounded variation on
IRp (see, e.g., Hobson [12]).
2) Consider the classes of functions

K :=
{
K

(
(x− ·)/h

)
: x ∈ IRp, h ∈ IR+

}
and Kk :=

{
K(k)

(
(x− ·)/h

)
: x ∈ IRp, h ∈ IR+

}
.

By (K.1)(i), there exist a κ < ∞ such that ‖K‖∞ = κ, so that the function K is bounded in absolute
value by κ. For ε > 0, set N(ε,K) = supQN(κε,K, dQ), where the supremum is taken aver all probability
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measures Q on (IRp,B), dQ is the L2(Q)-metric and N(κε,K, dQ) denotes the minimal number of balls
{f : dQ(f, g) < ε} of dQ-radius needed to cover K. The above class of functions K is known to have a
polynomial covering number under the entropy condition that is, for some C, ν > 0,

N(ε,K) ≤ Cε−ν , 0 < ε < 1. (1.2)

3) On the other hand, (K.1) (resp. (K.4)) ensures that the class of functions K (resp. Kk) has a measurable
envelope function and a uniform polynomial covering number (see, e.g., Lemma 22, p. 797, in Nolan and
Pollard [16] and Chapter 4 in Dudley [3]). The sharpness of the polynomial covering number assumption
(1.2) is discussed in Mason [13] and [14] (Remarks 1 and 2, p. 1396).
4) The continuity condition (K.1)(ii) entails that K is a pointwise measurable class, in the sense that it
admits a dense countable subclass with respect to the pointwise convergence topology. This measurability
assumption is instrumental with respect to the symmetrization procedure used later on in our proofs. The
measurability condition is easy to check in all the examples of interest (see, e.g., [4]).

Let hn, n = 1, 2 . . ., denotes a non-random (bandwidth) sequence of positive constants satisfying assump-
tions:

(H.1) hn ↘ 0 and nhn ↗∞, as n→∞;

(H.2) nh2k+p
n / log(h−pn ) →∞, as n→∞;

(H.3) log(h−pn )/ log log n→∞, as n→∞.

Remark 1.3 1) The conditions hn → 0 and nh2k+p
n / log n → ∞, as n → ∞, which are slightly weaker

than (H.1–2), turn out to be, in general, necessary and sufficient to ensure the strong consistency of the
multivariate Nadaraya-Watson estimator of the partial derivatives of order k of the regression function
(consult Collomb [1]). These two conditions are also enough strong to obtain weak limit laws (see, e.g.,
Deheuvels and Mason [2]).
2) The assumptions (H.1–3) are tailored with respect to almost sure convergence of our estimators.
3) The assumptions (H.2–3) are sharp, in the sense that if either one is not fulfilled, then the conclusions
of our forthcoming Theorems fail to hold in general. For the data-driven bandwidth case, refer to [2] and,
more recently, to Einmahl and Mason [5].

We introduce the kernel estimators of f(x), rψ(x) and mψ(x), defined by

f̂n(x) =
1
nhpn

n∑
i=1

K
(x−Xi

hn

)
, r̂ψ;n(x) =

1
nhpn

n∑
i=1

ψ(Yi)K
(x−Xi

hn

)
,

m̂ψ;n(x) =
r̂ψ;n(x)

f̂n(x)
when f̂n(x) 6= 0.

Our estimators of the functional D(k) of f(x) and rψ(x) are then defined as follows

f̂ (k)
n (x) = D(k)

(
f̂n(x)

)
=

1

nhk+pn

n∑
i=1

K(k)
(x−Xi

hn

)
,

r̂
(k)
ψ;n(x) = D(k)

(
r̂ψ;n(x)

)
=

1

nhk+pn

n∑
i=1

ψ(Yi)K(k)
(x−Xi

hn

)
.

Unless otherwise specified, we will limit most of our exposition to the case where k = (k1, . . . , kp) is such
that kj = 1 and kl = 0 for l 6= j and denote by kj = (0, . . . , 1, . . . , 0) the corresponding p-uple. It will
become obvious later on that our methods allow to treat likewise the case of an arbitrary k.
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m̂
(kj)
ψ;n (x) = D(kj)

(
m̂ψ;n(x)

)
=
r̂
(kj)
ψ;n (x)

f̂n(x)
− r̂ψ;n(x)f̂ (kj)

n (x)

f̂2
n(x)

.

We note that, when kj ≥ 2 for some j, m̂(k)
ψ;n(x) = D(k)

(
m̂ψ;n(x)

)
may be obtained likewise through the

usual Leibniz expansion of derivatives of products. One of the motivation to this study comes from the
fact that the estimation of the proper partial derivatives of mψ is needed to implement plug-in bandwidth
selection strategies. For details, consult Section 2.4 in Deheuvels and Mason (2004).

Set
f (k)
n (x) = IE

[
f̂ (k)
n (x)

]
and r

(k)
ψ;n(x) = IE

[
r̂
(k)
ψ;n(x)

]
. (1.3)

For the study of the rate of convergence of our estimator of the regression function and its differentials,
it will be convenient to center m̂n(x) and m̂(kj)

ψ;n (x), respectively, by

ĨE
[
m̂ψ;n(x)

]
:=

rψ;n(x)
fn(x)

, ĨE
[
m̂

(kj)
ψ;n (x)

]
:=

r
(kj)
ψ;n (x)
fn(x)

− rψ;n(x)f (kj)
n (x)

f2
n(x)

. (1.4)

A similar setup applies for operators D(k) with |k| = k ≥ 2.

The main purpose of the present paper is to give a description of the exact rate of strong convergence of
the uniform deviation of m̂(k)

ψ;n(x)− ĨE
[
m̂

(k)
ψ;n(x)

]
over x ∈ I. The convergence rate we shall obtain takes the

form of uniform law of the logarithm and are stated in Section 2. The methods of proof that we will use
to establish these results can be applied to treat a number of other kernel-type estimators, including local
polynomial estimators (see, e.g., Fan and Gijbels [7] and Ruppert and Wand [19]). Section 3 contains the
one-dimensional extension to the local linear least squares kernel estimator ofmψ, higher-order polynomial
fits and derivative estimation. Section 4 is devoted to the proofs. The main idea underlying our arguments
is that by using the techniques from abstract empirical process theory and probability on Banach spaces,
one can prove almost sure limit laws for a large class of nonparametric estimators of regression functions.

2. Uniform laws of the logarithm for estimators of the regression derivatives

First, we treat the special case q = 1 (that is, when ψ(Y) ∈ IR).

Theorem 2.1 Under (F.1–3), (H.1–3), (K.1–4) we have, as n→∞,∣∣∣∣{ nh2k+p
n

2 log(h−pn )

}1/2

sup
x∈I

±
{
m̂

(k)
ψ;n(x)− ĨE

[
m̂

(k)
ψ;n(x)

]}
− σψ(I)

∣∣∣∣ = o(1), almost surely, (2.1)

where

σψ(I) = sup
x∈I

{Var
[
ψ(Y)

∣∣X = x
]

f(x)

∫
IRp

[K(k)(u)]2du
}1/2

. (2.2)

For a related ‘in probability’ theorem, refer to Theorem 1.1 in [2].

The strictly multivariate case: ψ(Y) ∈ IRq, q > 1

The extension to several dimensions for ψ(Y) is straightforward. We just need a suitable preliminary
normalization of the stochastic deviation m̂(k)

ψ;n(x)− ĨE
[
m̂

(k)
ψ;n(x)

]
. This enables us to characterize precisely

the corresponding limit set, by using a standard argument developped by Finkelstein [8]. Let Σψ(x)
denotes the conditional variance-covariance matrix of ψ(Y) given that X = x, which is assumed definite

4



positive without loss of generality. We will make use of the following asymptotic variance-covariance
matrix

Vx = Vψ(x) :=
{ 1
f(x)

∫
IRp

[K(k)(t)]2dt
}
× Σψ(x),

which is properly defined for x ∈ J and definite positive under (F.1–3). Below, suprema of q-vectors are
meant with respect to the maximum norm | · |+ on IRq, where |v|+ = max

i≤q
|vi|.

Theorem 2.2 If (F.1–3), (H.2–4) and (K.1–4) hold, then, the sequence of normalized q-vectors{
nh2k+p

n

2 log(h−pn )

}1/2

sup
x∈I

±
{
V−1/2

x

{
m̂

(k)
ψ;n(x)− ĨE

[
m̂

(k)
ψ;n(x)

]}}
is almost surely relatively compact in IRq with limiting set

Sq =
{
v ∈ IRq : vTv = 1

}
, the q-dimensional unit sphere.

Notice that Theorem 2.2 is a simple consequence of Theorem 2.1, when combined with the proof of
Lemma 2 of Finkelstein (1971) [8]. To see how Theorem 2.2 follows from Theorem 2.1, observe that the
normalized deviation (properly rescaled){

V−1/2
x

{
m̂

(k)
ψ;n(x)− ĨE

[
m̂

(k)
ψ;n(x)

]}}
is asymptotically normally distributed with an identity covariance matrix.

Remark 2.1 With obvious changes of notation, Theorems 2.1 and 2.2 and their proofs remain valid
when the regression function mψ is replaced by

mξ
ψ(x) = IE

[
ψ(Y)|ξ(X) = x

]
,

where ξ : IRp → IRr denotes an auxiliary continuous function and x ∈ IRr.

3. Uniform law of the logarithm for local polynomial kernel estimators

In this paper, we are mainly focused on the stochastic part of the usual deviation. The deterministic
part or the so-called bias depends essentially on smoothness properties of the regression function mψ and
can be easily estimated via techniques from analysis. In the literature, it is a well-known fact that the
asymptotic bias of the Nadaraya-Watson estimator has a bad form. Namely, if we use a standard kernel of
order two, the bias of the Nadaraya-Watson estimator depends on the intrinsic part m′′

ψ interplaying with
the artifact m′

ψf
′/f . Thus, even in the situation of a linear regression, the bias of the NW estimator is

large. The same phenomenon occurs for the Nadaraya-Watson estimators of the regression derivatives. To
overcome this problem, it exists many alternative estimators. For example, if we assume some regularity
conditions on the regression function, one can use the local polynomial regression techniques of Fan and
Gijbels [7]. Our next task will be to extend the preceding results to the local polynomial least squares
smoothers. For ease of presentation, we restrict ourselves first to the univariate case and to the local
linear least squares estimator. At the end of this section, we present also some extensions to higher-order
polynomial fits and derivative estimation.

Let (X,Y ), (X1, Y1), (X2, Y2), . . ., be independent and identically distributed random couples in IR2. Now
K denotes a real valued kernel function defined on IR, ψ is a Borel function bounded on each compact
subinterval of IR and I = [a, b], J = [a′, b′] ⊃ I are two fixed compact intervals in IR. In the univariate
setting, assumptions (F.1–3), (K.1–3) and (H.1–3) reduce to the followings:
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(F.1) g(·, ·) is continuous on J × IR;

(F.2) f(·) is continuous and strictly positive on J ;

(F.3) Y 1I{X∈J} is bounded on IR;

(K.1) K is a right-continuous function with bounded variation on IR;

(K.2) K is compactly supported;

(K.3)
∫
IR
K(u) du = 1;

(H.1) hn ↘ 0 and nhn ↗∞, as n→∞;

(H.2) nh2k+1
n / log(h−1

n ) →∞, as n→∞;

(H.3) log(h−1
n )/ log2 n→∞, as n→∞.

For a kernel K fulfilling (K.1–2), we set for any integer r ≥ 0,

µr = µr(K) =
∫

IR

urK(u)du.

It is common to work with a kernel function K(·) such that

(K.4) µ1(K) = 0 and µ2(K) 6= 0.

Throughout this section, we assume also that mψ(·) is two times continuously differentiable over the com-
pact interval J (see, e.g. (F.4–5) below). Our first aim will be to establish the strong uniform consistency
of the local linear estimator of the regression, defined by

m̂LL
ψ;n(x) :=

r̂ψ;n(x)f̂n,2(x)− r̂ψ;n,1(x)f̂n,1(x)

f̂n(x)f̂n,2(x)− f̂n,1(x)f̂n,1(x)
, (3.1)

where

f̂n,j(x) :=
1
nhn

n∑
i=1

{x−Xi

hn

}j
K

(x−Xi

hn

)
, j = 1, 2,

r̂ψ;n,1(x) :=
1
nhn

n∑
i=1

ψ(Yi)
{x−Xi

hn

}
K

(x−Xi

hn

)
.

Notice that, in the multivariate setting, such simple explicit formula for the local linear estimator is not
available. This estimator is better than the Nadaraya-Watson estimator when the design is random and
has the favorable property to reproduce polynomial of degree one. In particular, Fan [6] shows that the
local linear estimator has an important asymptotic minimax property. Precisely, the local linear estimator
has a high minimax efficiency among all possible estimators, including nonlinear smoothers such as median
regression. For the centering terms, we proceed as in (1.3) and (1.4) and set

ĨE
[
m̂LL
ψ;n(x)

]
:=

rψ;n(x)fn,2(x)− rψ;n,1(x)fn,1(x)
fn(x)fn,2(x)− fn,1(x)fn,1(x)

,

where
IE

[
f̂n,j(x)

]
= fn,j(x), IE

[
r̂ψ;n,j(x)

]
= rψ;n,j(x), j ∈ IN.

We obtain the following uniform law of the logarithm concerning the local linear smoother.
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Theorem 3.1 Under (F.1–3), (H.1–3), (K.1–4) we have, as n→∞,∣∣∣∣{ nhn

2 log(h−1
n )

}1/2

sup
x∈I

±
{
m̂LL
ψ;n(x)− ĨE

[
m̂LL
ψ;n(x)

]}
− σψ(I)

∣∣∣∣ = o(1), almost surely,

where

σψ(I) = sup
x∈I

{
Var

[
ψ(Y )

∣∣X = x
]

f(x)

∫
IR

[K(u)]2du
}1/2

.

We now present an interesting application for the function ψ(·). For some t ∈ IR, by setting ψ(y) = 1I{y≤t}
in (3.1), we obtain a new estimator of the conditional distribution function

F
(
t|x

)
:= IP

{
Y ≤ t|X = x

}
,

defined by

F̂LLn
(
t|x

)
:=

r̂n(x; t)f̂n,2(x)− r̂n,1(x; t)f̂n,1(x)

f̂n(x)f̂n,2(x)− f̂n,1(x)f̂n,1(x)
.

where

r̂n(x; t) :=
1
nhn

n∑
i=1

1I{Yi≤t}K
(x−Xi

hn

)
and r̂n,1(x; t) :=

1
nhn

n∑
i=1

1I{Yi≤t}

{x−Xi

hn

}
K

(x−Xi

hn

)
.

In the next corollary we get the exact rate of strong uniform consistency of the local linear conditional
empirical distribution function. Let

FLLn
(
t|x

)
:=

rn(x; t)fn,2(x)− rn,1(x; t)fn,1(x)
fn(x)fn,2(x)− fn,1(x)fn,1(x)

.

Corollary 3.1 Under (F.1–3), (H.1–3) and (K.1–4), we have, as n→∞,∣∣∣{ nhn

2 log(h−1
n )

}1/2

sup
x∈I

±
{
F̂LLn

(
t|x

)
− FLLn

(
t|x

)}
− σF,t(I)

∣∣∣ a.s.= o(1),

where

σF,t(I) = sup
x∈I

{
F

(
t|x

){
1− F

(
t|x

)}
f(x)

∫
IR

K2(u)du
}1/2

.

Moreover, we have, with probability one,∣∣∣{ nhn
2 log(hn)

}1/2

sup
t∈IR

sup
x∈I

±
{
F̂LLn

(
t|x

)
− FLLn

(
t|x

)}
− σF (I)

∣∣∣ = o(1), (3.2)

where

σF (I) = sup
t∈IR

σF,t(I) =
‖K‖2

2 inf
x∈I

f(x)
.

Now, we look after the bias term of this new estimator F̂LLn
(
t|x

)
. One needs additional smoothness

assumptions on f(·) and g(·, ·), namely

(F.4) f has continuous derivatives of order 1, 2, 3 on J ;

(F.5) g is three times continuously differentiable on J × IR.

Proposition 3.1 Assume (K.1–4) and (F.1–5). When hn = h→ 0, we have, for all x ∈ I,

FLLn
(
t|x

)
− F

(
t|x

)
=
h2

2
F ′′

(
t|x

)
µ2(K)(1 + o(1)).
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Note that Proposition 3.1 and Corollary 3.1 allow us to derive explicit convergence rates for the standard
deviation F̂LLn

(
t|x

)
− F

(
t|x

)
. We can also derive the optimal theoretical bandwidth, namely

hoptn (K) =
{

log n
n

}1/5


sup
x∈I

{
σ2(x)
fX(x)

}
µ0(K2)

sup
x∈I

{
m′′(x)

}2[
µ2(K)

]2


1/5

.

We investigate now general polynomial fits and derivative estimation. Let p be the degree of the lo-
cal polynomial fit. Throughout the end of this section, we will therefore assume that mψ(·) is p times
differentiable over the compact interval J and (p+ 1) times differentiable over the compact interval I.

Set

Xx =


1 (X1 − x) . . . (X1 − x)p

...
...

...

1 (Xn − x) . . . (Xn − x)p

 , Wx = diag
{
K

(Xi − x

hn

)}
and Ψ(y) =


ψ(Y1)

...

ψ(Yn)

 .

According to the definition of Ruppert and Wand [17], for k ≤ p , the local polynomial kernel estimator
of the k-th derivative of mψ(x) is defined by,

m̃
(k)
ψ (x) = m̃

(k)
ψ;n(x; p) := k! eTk+1(X

T
xWxXx)−1XT

xWxΨ(y),

where ek+1 is the (p+ 1)× 1 vector having 1 in the (k+ 1)-th entry and zeros elsewhere. It is convenient
to set, for each j ∈ IN,

f̃j(x) =
1
nhn

n∑
i=1

(
Xi − x

hn

)j
K

(
Xi − x

hn

)
and r̃j(x) =

1
nhn

n∑
i=1

ψ(Yi)
(
Xi − x

hn

)j
K

(
Xi − x

hn

)
.

Observe that

m̃
(k)
ψ (x) = k! eTk+1 ×


f̃0(x) f̃1(x) . . . f̃p(x)

...
...

...

f̃p(x) f̃p+1(x) . . . f̃2p(x)


−1

×


r̃0(x)

r̃1(x)
...

r̃p(x)

 .

For example, if (k, p) = (0, 1), we get clearly the local linear estimator defined in (3.1), namely

m̃
(0)
ψ;n(x; 1) = (1, 0)×

 f̃0(x) f̃1(x)

f̃1(x) f̃2(x)

−1

×

 r̃0(x)

r̃1(x)

 =
r̃0(x)f̃2(x)− r̃1(x)f̃1(x)
f̃0(x)f̃2(x)− f̃1(x)f̃1(x)

.

Explicit formulae of local polynomial estimators became large as p grows due to matrix complexity. When
(k, p) = (1, 2), we get that

m̃
(1)
ψ (x; 2) =

r̃(x)(f̃2(x)f̃3(x)− f̃1(x)f̃4(x)) + r̃1(x)(f̃(x)f̃4(x)− f̃2
2 (x)) + r̃2(x)(f̃1(x)f̃2(x)− f̃(x)f̃3(x))

f̃(x)f̃2(x)f̃4(x) + 2f̃1(x)f̃2(x)f̃3(x)− f̃3
2 (x)− f̃(x)f̃2

3 (x)− f̃2
1 (x)f̃4(x)

.

Let Np be the (p+ 1)× (p+ 1) matrix having (i, j)th entry equal to µi+j−2(K), 1 ≤ i, j ≤ p+ 1 and let
Mk,p(u) be the same asNp, but with the (k+1)-th column replaced by (1, u, . . . , up)T . This notation allows
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us to introduce the kernel corresponding to the estimation of the kth derivative with local polynomial
fitting of degree p (see, e.g., [7] or [19] pp. 135-137):

K(k,p)(u) := k!× |Mk,p(u)|
|Np|

×K(u).

For (k, p) = (1, 2) and (k, p) = (2, 3), we obtain

|M1,2(u)|
|N3|

=
u

µ2(K)
and

|M2,3(u)|
|N3|

=
u2 − µ2(K)

µ4(K)− µ2
2(K)

.

Thus, under (K.3–4),

K(1,2)(u) :=
uK(u)
µ2(K)

and K(2,3)(u) := 2×
{
u2 − µ2(K)

}
K(u)

µ4(K)− µ2
2(K)

are kernels of order (1, 3) and (2, 4) respectively. More generally, it is easily established that K(k,p) satisfies

∫
IR

ujK(k,p)(u)du =


0, 0 ≤ j ≤ p, j 6= q

k!, j = q

βk,p 6= 0, j = p+ 1.

Therefore (−1)kK(k,p) is an order (k, p+1) kernel as defined by Gasser et al. [9]. Such kernels are tailored
for estimating derivatives of functions such as regression or density functions. Following Ruppert and
Wand [17] or Wand and Jones [19], some routine analysis gives us the following important fact

Var
[
m̃

(k)
ψ;n(x)

]
=

1
nh2k+1

n

×
{

Var
[
ψ(Y )

∣∣X = x
]

f(x)

∫
IR

[
K(k,p)(u)

]2
du

}
(1 + oIP(1)).

By repeating the same arguments as in the proof of Theorem 3.1, we can formulate a uniform limit law
for each couple (k, p).

Theorem 3.2 Under (F.1–3), (H.1–3), (K.1–3) we have, as n→∞,∣∣∣∣{ nh2k+1
n

2 log(h−1
n )

}1/2

sup
x∈I

±
{
m̃

(k)
ψ;n(x)− ĨE

[
m̃

(k)
ψ;n(x)

]}
− σ(k,p)(I)

∣∣∣∣ = o(1), almost surely,

where

σ(k,p)(I) = sup
x∈I

{
Var

[
ψ(Y )

∣∣X = x
]

f(x)

∫
IR

[
K(k,p)(u)

]2
du

}1/2

.

4. Proofs

The proofs of our theorems follow the same line and can be inferred with little effort from the proof of the
Theorem 1 in Einmahl and Mason [4]. For ease of conciseness, we decide only to prove Theorem 3.1. In
order to study the asymptotic behavior of the local linear estimator we introduce a general local empirical
process. For any j ∈ IN and continuous real valued functions c(·) and d(·) on the compact interval J , set
for x ∈ J ,

Wn,j(x, ψ) =
n∑
i=1

(
c(x)ψ(Yi) + d(x)

)
Kj

(x−Xi

hn

)
− nIE

{(
c(x)ψ(Y ) + d(x)

)
Kj

(x−X

hn

)}
, (4.1)

9



where Kj(u) = ujK(u), u ∈ IR. Notice that

Wn,j(x, ψ) =
√
nαn(ϑx),

where αn denotes the bivariate empirical process based upon (X1, Y1), . . . (Xn, Yn) and indexed by the
class of functions

ϑx(u, v) :=
(
c(x)ψ(v) + d(x)

)
Kj

(x− u

hn

)
, x ∈ I.

Theorem 4.1 Under (F.1–3), (H.1–3) and (K.1–3), as n→∞, with probability one,∣∣∣{2nhn log(h−1
n )

}−1/2

sup
x∈I

{
±Wn,j(x, ψ)

}
− σW (I)

∣∣∣ = o(1),

where

σ2
W (I) = sup

x∈I
IE

[(
c(x)ψ(Y ) + d(x)

)2∣∣X = x
]
f(x)

∫
IR

[
Kj(u)

]2
du.

Proof. The methodology of proof is exactly the same as in Einmahl et Mason (2000), Theorem 1, p .4.
To obtain the upper bound, the authors use a maximal form of the Bernstein’s inequality to estimate
the supremum of the deviation on the nodes of a discrete grid and then use the Talagrand’s inequality
combined with a moment bound to control the difference between the original empirical processes and its
values over the nodes of the grid. The main argument of the proof is based on Talagrand’s exponential
equality [18] for general empirical processes combined with an useful moment inequality for empirical
processes indexed by classes of functions of Vapnik-Cervonenkis type (see, e.g., [4], [5], [10] and [11]).
Regarding the inner bound part, they apply poissonization techniques in the border of the limiting set
σ2
W (I). In our case, we notice that the function Kj(u) = uj [K(u)], j ≥ 0, is clearly a function with

bounded variation on IR. Thus Kj fulfills also (K.1–2). By following the steps of their Theorem 1 and by
replacing K by Kj , we obtain easily Theorem 4.1. Details are omitted. 2

The deviation m̂LL
ψ;n(x)− ĨE

[
m̂LL
ψ;n(x)

]
cannot be expressed as a linear functional of the bivariate empirical

process. However we are going to show that the stochastic deviation behaves asymptotically like its
linearized version which corresponds to a special case of the general process in (4.1). Set

εn := sup
x∈I

{{
m̂LL
ψ;n(x)− ĨE

[
m̂LL
ψ;n(x)

]}
− 1
f(x)

{{
r̂ψ;n(x)− rψ;n(x)

}
−mψ(x)

{
f̂n(x)− fn(x)

}}}
.

Notice that the right-hand side above is exactly the process Wn,j(x, ψ) defined in (4.1), where we have
chosen c(x) = 1/f(x) and d(x) = −mψ(x)/f(x) which are uniformly continuous on J via (F.1–3) in
conjunction with Scheffé’s lemma. The proof of Theorem 3.1 boils down to the following lemma:

Lemma 1 Under the assumptions of Theorem 3.1, we have, with probability one,

εn = o

({
nhn

2 log(h−1
n )

}−1/2)
.

Proof. Applying Theorem 4.1 with c(x) = 0, d(x) = 1, j = 0, 1, 2, and then with c(x) = 1, d(x) = 0 and
j = 0, 1, we get that
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{ nhn

2 log(h−1
n )

}1/2

sup
x∈I

±
{
f̂n(x)− fn(x)

} a.s.= O(1), (4.2){ nhn

2 log(h−1
n )

}1/2

sup
x∈I

±
{
f̂n,1(x)− fn,1(x)

} a.s.= O(1), (4.3){ nhn

2 log(h−1
n )

}1/2

sup
x∈I

±
{
f̂n,2(x)− fn,2(x)

} a.s.= O(1), (4.4){ nhn

2 log(h−1
n )

}1/2

sup
x∈I

±
{
r̂ψ;n(x)− rψ;n(x)

} a.s.= O(1), (4.5){ nhn

2 log(h−1
n )

}1/2

sup
x∈I

±
{
r̂ψ;n,1(x)− rψ;n,1(x)

} a.s.= O(1). (4.6)

Under (F.1–3), (K.1–4) and (H.1), we obtain, via Bochner’s Lemma,

fn(x) = f(x) + o(1), (4.7)

fn,1(x) = f(x)µ1(K) + o(1) = o(1), (4.8)

fn,2(x) = f(x)µ2(K) + o(1),
rψ;n(x) = rψ(x) + o(1)), (4.9)

rψ;n,1(x) = rψ(x)µ1(K) + o(1) = o(1). (4.10)

We leave temporarily the dependence on x and ψ,

m̂LL
n − ĨE

[
m̂LL
n

]
=

{
r̂nf̂n,2 − r̂n,1f̂n,1

}
f̂nf̂n,2 − f̂2

n,1

−
{
rnfn,2 − rn,1fn,1

}
fnfn,2 − f2

n,1

=

{
r̂nf̂n,2 − rnfn,2 + rn,1fn,1 − r̂n,1f̂n,1

}
f̂nf̂n,2 − f̂2

n,1

+

{
rnfn,2 − rn,1fn,1

}{
fnfn,2 − f2

n,1 − f̂nf̂n,2 + f̂2
n,1

}{
f̂nf̂n,2 − f̂2

n,1

}
×

{
fnfn,2 − f2

n,1

}
a.s.=

{
1

f̂nf̂n,2
×

{{
r̂n − rn

}
f̂n,2 + rn

{
f̂n,2 − fn,2

}
+

{
rn,1 − r̂n,1

}
fn,1 + r̂n,1

{
fn,1 − f̂n,1

}}
+

rn

f̂nf̂n,2fn
×

{{
fn − f̂n

}
f̂n,2 + fn

{
fn,2 − f̂n,2

}
+

{
f̂n,1 − fn,1

}{
f̂n,1 + fn,1

}}}

+ o

({
nhn

2 log(h−1
n )

}−1/2)
a.s.=

r̂n − rn

f̂n
+
fn − f̂n

f̂nfn
× rn + o

({
nhn

2 log(h−1
n )

}−1/2) [
(4.6)+(4.8) and (4.3)+(4.10)

]
a.s.=

1
f
× {r̂n − rn} −

m

f
×

{
f̂n − fn

}
+ o

({
nhn

2 log(h−1
n )

}−1/2) [
(4.7)+(4.9)

]
,

from which the lemma follows. 2

Corollary 3.1 is a straightforward consequence of Theorem 3.1. The class of functions ψt(y) = 1I{y≤t} is
clearly a bounded pointwise measurable VC subgraph class of real valued functions. Thus we can equally
obtain (3.2), which is a bias improved version of Corollary 2 in Einmahl and Mason [4], p. 6. Finally the
proof of Proposition 3.1 follows after some basic analysis.
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Inst. H. Poincaré Probab. Statist., 38.6, 907-921.

[12] Hobson, E.W. (1927), The Theory of Functions of a Real Variable and the Theory of Fourier Series. 1, 3rd. ed.
Cambridge Univ. Press.

[13] Mason, D. M. (2003). A uniform functional law of the logarithm for a local Gaussian process. In High Dimensional
Probability III (J. Hoffmann-Jørgensen, M. B. Marcus and J. A. Wellner, eds) 135-151. Birkhäuser, Boston
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